
DREAMTools
Release 1.3.0

Thomas Cokelaer and the DREAMTools developers

March 21, 2016

Contents

1 Overview 3

2 Available challenges, templates and gold standards 5

3 Full documentation 7

Python Module Index 55

i

ii

DREAMTools, Release 1.3.0

Current version: 1.3.0, March 21, 2016

Python version DREAMTools is supported for Python 2.7, 3.4 and 3.5. Pre-compiled versions are
available for Linux and MAC platforms through Anaconda and the bioconda channel.

Note about coverage We do not run the entire test suite on Travis, which reports a 40% test coverage.
Note however, that the actual test coverage is about 80%.

Contributions Please join https://github.com/dreamtools/dreamtools

Online documentation On readthedocs

Issues and bug reports On github

How to cite Cokelaer T, Bansal M, Bare C et al. DREAMTools: a Python package for scoring col-
laborative challenges [version 1; referees: awaiting peer review] F1000Research 2015, 4:1030
(doi: 10.12688/f1000research.7118.1) F1000 link

Contents

• DREAMTools
– Overview

* Motivation
* Installation
* Usage

– Available challenges, templates and gold standards
– Full documentation

Contents 1

https://github.com/dreamtools/dreamtools
http://dreamtools.readthedocs.org/
https://github.com/dreamtools/dreamtools/issues
http://f1000research.com/articles/4-1030/v1

DREAMTools, Release 1.3.0

2 Contents

CHAPTER 1

Overview

1.1 Motivation

DREAMTools aims at sharing code used in the scoring of DREAM challenges that pose fundamental questions
about system biology and translational medicine.

The main goals of DREAMTools are to provide:

1. Scoring functions equivalent to those used during past DREAM challenges for end-users via a standalone
application (called dreamtools).

2. A common place for developers involved in the DREAM challenges to share code

DREAMTools does not provide code related to aggregation, leaderboards, or more complex analysis even though
such code may be provided (e.g., in D8C1 challenge).

Note that many scoring functions requires data hosted on Synapse . We therefore strongly encourage you to
register to Synapse. Depending on the challenge, you may be requested to accept terms of agreements to use the
data.

1.2 Installation

For those familiar with Python, you may use the pip executable provided with Python. It will installed the latest
release and the dependencies:

pip install cython
pip install dreamtools

If you are not familiar with compilation and/or Python, you may use conda since we have pre-compiled packages
with a conda channel called bioconda:

conda config --add channels r
conda config --add channels bioconda
conda install dreamtools

See Installation section for details.

1.3 Usage

Every DREAM challenge is different. We will not explain here the scientific goal but show how one could score
its own prediction. Developers can you DREAMTools as a Python package:

3

http://dreamchallenges.org
http://www.synapse.org
https://pypi.python.org/pypi/pip
https://www.continuum.io/downloads

DREAMTools, Release 1.3.0

>>> from dreamtools import D6C3
>>> s = D6C3()
>>> s.score(s.download_template())
{'results': chi2 53.980741
R-square 34.733565
Spearman(Sp) 0.646917
Pearson(Cp) 0.647516
dtype: float64}

Besides, a standalone application can be used from a terminal. The executable is called dreamtools. Here is an
example:

dreamtools --challenge D6C3 --submission path_to_a_file

See User Guide for more details about the usage of the standalone application.

4 Chapter 1. Overview

CHAPTER 2

Available challenges, templates and gold standards

DREAMTools includes about 80% of DREAM challenges from DREAM2 to DREAM9.5 Please visit F1000 link
(Table 1).

All gold standards and templates are retrieved automatically. Once downloaded, you can obtain the location of a
gold standard or template as follows:

dreamtools --challenge D6C3 --download-gold-standard
dreamtools --challenge D6C3 --download-template

5

http://f1000research.com/articles/4-1030/v1

DREAMTools, Release 1.3.0

6 Chapter 2. Available challenges, templates and gold standards

CHAPTER 3

Full documentation

Contents

• Installation
– Familiar with Python ecosystem ?
– If you are new to Python
– Installation from source
– Note for Windows and Anaconda
– Note for Python2.X and Python3.X

3.1 Installation

3.1.1 Familiar with Python ecosystem ?

If you are familiar with Python and the pip application and your system is already configured (compilers, devel-
opment libraries available), these two commands should install DREAMTools and its dependencies (in unix or
windows terminal):

pip install cython
pip install dreamtools

If you do not have dependencies installed yet (e.g., pandas, numpy, scipy), this may take a while depending on
your system (typically 10-15 minutes). If you are in a hurry or do not want to compile libraries, see the Anaconda
solution here below.

3.1.2 If you are new to Python

If you are not familiar with Python, or have issues with the previous method (e.g., compilation failure), or do not
have root access, we would recommend to use the Anaconda solution.

Anaconda is a free Python distribution. It includes most popular Python packages for science and data analysis and
has dedicated channels. One such channel is called ‘bioconda >https://bioconda.github.io/>‘_ and complements
the default channel (conda) with a set of packages dedicated to life science.

We have included DREAMTools in bioconda channel. So, once Anaconda is installed, you first need to add the
bioconda channel to your environment (and R channel):

conda config --add channels r
conda config --add channels bioconda

7

https://www.continuum.io/downloads

DREAMTools, Release 1.3.0

This should be done only once. Then, install DREAMTools itself:

conda install dreamtools

This command should install DREAMTools in your default conda environment. If you wish to try DREAMTools
in another (independent) environment (e.g., a different python version), you would need to create and activate the
environment first:

conda create --name test_dreamtools python=3.5
source activate test_dreamtools
conda install dreamtools

3.1.3 Installation from source

The previous methods relies on released versions of DREAMTools. If a new feature is only available in the source
code, then you will need to get the source code, which is available in the github repository:

git clone git@github.com:dreamtools/dreamtools.git
cd dreamtools
python setup.py install

Dependencies (e.g. Pandas) will need to be compiled or pre-installed (see above).

3.1.4 Note for Windows and Anaconda

We do not provide any DREAMTools package on bioconda for Windows.

However, if you use Anaconda and decide to compile the source yourself under Windows, then you will have to
install a compiler that is compatible with Anaconda. In other words, you will have to use the same compiled as
the one used by Anaconda.

For Python 2.7, compilation should work easily. You need to know that pre-compiled packages (e.g.,
Cython) used a specific version of a compiler (http://docs.continuum.io/anaconda/faq#how-did-you-compile-
cpython), which is Visual Studio version 2008 and is provided by Microsoft (http://www.microsoft.com/en-
us/download/details.aspx?id=44266) for free.

For Python3.4 and 3.5, this is a bit more difficult. You should get Visual C version 2010
(http://stackoverflow.com/questions/29909330/microsoft-visual-c-compiler-for-python-3-4) or for Python 3.5 an-
other Visual C version 2015. This may change with time but this information was found on Anaconda documen-
tation (March 2016). You may found useful information here as well for VS2015: http://www.microsoft.com/en-
us/download/details.aspx?id=44266

3.1.5 Note for Python2.X and Python3.X

DREAMTools is compatible with Python2.7, Python3.4, Python3.5. The bioconda channel provide these 3
versions. If you still want to use Python2.6 or 3.3, DREAMTools may work as well but you would need to
compile the dependencies yourself.

8 Chapter 3. Full documentation

http://docs.continuum.io/anaconda/faq#how-did-you-compile-cpython
http://docs.continuum.io/anaconda/faq#how-did-you-compile-cpython
http://www.microsoft.com/en-us/download/details.aspx?id=44266
http://www.microsoft.com/en-us/download/details.aspx?id=44266
http://stackoverflow.com/questions/29909330/microsoft-visual-c-compiler-for-python-3-4
http://www.microsoft.com/en-us/download/details.aspx?id=44266
http://www.microsoft.com/en-us/download/details.aspx?id=44266

DREAMTools, Release 1.3.0

3.2 User Guide

3.2.1 Introduction

DREAMTools provides scoring functions that were used in past DREAM challenges. In order to use those
scoring functions, users may use an executable called dreamtools (See The dreamtools executable section) while
developers may use the Python library directly in their own pipelines.

The main idea behind DREAMTools is to provide to researchers the scoring functions that were used in past
DREAM challenges. Usually, researchers would already know the topic / purposes of a challenge but information
can also be retrieved with DREAMTools as shown here below. Then, one would need to design a new method-
ology to solve the challenge. The difficulties then may be to (i) retrieve a template, (ii) fill the template with a
prediction and (iii) to score the prediction to evaluate the performance of the prediction.

DREAMTools will help researchers in retrieving information and templates about a challenge, and apply the
relevant scoring function to evaluate their algoritm(s).

3.2.2 What is the data format, what is the challenge about ?

Each data format is different and each challenge is complex and specific to a biological problem so we will not
explain each challenge or template format in this documentation. However, links and information provided within
DREAMTools should give enough help to start with.

There were tens of challenges (see http://f1000research.com/articles/4-1030/v1) during the last years and we will
refer to a given challenge by a nickname (e.g., D6C3 stands for challenge 3 in DREAM version 6). Finally, note
that some challenges have sub-challenges whose names must be provided.

For example, to retrieve information about the D9C1 challenge (Gene essentiality), Python users can type these
commands:

from dreamtools import D9C1
challenge = D9C1(download=False)
challenge.onweb()

Or, using the dreamtools standalone application, one can type in a shell the following command:

dreamtools --challenge D9C1 --info

This should open the Synapse web page of the challenge where description, template, leaderboards are stored
altogether.

3.2.3 Synapse login

Before giving more details about DREAMtools, we would like to emphasize that the software is closely linked to
Synapse where challenges are described and where data required for the scoring may be stored.

Note: Consequently, users will need to sign up to Synapse website: http://www.synapse.org.

Once you have a Synapse login, you can also create a local authentication by creating a file called .synapseConfig
in your home directory and add this content:

[authentication]
username: email
password: password

3.2. User Guide 9

http://f1000research.com/articles/4-1030/v1
http://www.synapse.org
http://www.synapse.org

DREAMTools, Release 1.3.0

where the email and password are those you have created/obtained from Synapse . This will avoid you to have to
enter the login/password each time DREAMTools tries to connect to Synapse.

3.2.4 Notes about data restrictions

DREAMTools provides functions to obtain the template and gold standard(s) used in a given challenge. Some
challenge have restrictions of data access and require the user to accept conditions of use. Such data are stored on
Synapse and the first time you run a challenge within DREAMTools, files may be downloaded and you may be
asked to accept some conditions of use.

3.2.5 The dreamtools executable

For users, DREAMTools package provides an executable called dreamtools, which should be installed automat-
ically. To check that it is installed properly, type this command in a shell:

dreamtools --help

this will give you some basic help about the usage. Let us seee how it works. First, let us choose a challenge.
Challenge are named DXCY where X starts from number 2 to indicate the DREAM session. Y indicates the
challenge itself.

dreamtools --challenge D5C1

This will raise an error because there is no submission provided. A template/example can be retrieved as follows:

dreamtools --challenge D5C1 --download-template

This prints the path to a template, which can now be scored (even though the template contains dummy data in
general):

dreamtools --challenge D5C1 --filename <path2template>

similarly one can download the gold standard. This is a good way to check the scoring function since scoring the
gold standard with itself should give a perfect score:

dreamtools --challenge D5C1 --download-gold-standard
dreamtools --challenge D5C1 --filename <path2gold>

If there are sub challenges like in D9C1 challenge, a sub-challenge name must be provided. If one type:

dreamtools --challenge D9C1 --download-template

an error message will tell you that the sub-challenge name is missing together their names. Here, the names are
shown to be sc1, sc2, sc3:

dreamtools --challenge D9C1 --download-template --sub-challenge sc1

10 Chapter 3. Full documentation

http://www.synapse.org
http://www.synapse.org
http://www.synapse.org

DREAMTools, Release 1.3.0

3.2.6 Scripting

An alternative to the standalone application is to use DREAMTools inside a Python script. Similarly to what
we have seen in the previous section, you can download templates, gold standards and scoring functions. All
challenges are based upon a single Challenge class and use a very similar syntax:

import a challenge
from dreamtools import D5C1
create the challenge structure
c = D5C1()

figure out the path to a template
filename = c.download_template()

score that template
results = c.score(filename)

print the results
print(results)

If you have sub challenges, they can be found in the attribute called sub_challenges:

from dreamtools import D9C1
c = D9C1()
subname = c.sub_challenges[0] # get only the first sub challenge name
filename = c.download_template(subname)
results = c.score(filename, subname)
print(results)

3.2.7 Getting information about a challenge

From the Python command line, for a given challenge, you can get a brief summary and the Synapse page identi-
fier:

from dreamtools import D9C1
s = D9C1(download=False) # Needed if you do not have a Synapse account
print(s)

You can also open the Synapse web page corresponding to that challenge:

s.onweb()

Or use the dreamtools executable:

dreamtools --challenge D9C1 --info
dreamtools --challenge D9C1 --onweb

3.2.8 Where to get more help or examples ?

All dream challenges have their own Synapse page and should be used as the official references. Especially if you
want to contact the organisers of a challenge.

However, you may also get brief help and information from other sources:

1. From the DREAMTools paper on F1000.

3.2. User Guide 11

http://f1000research.com/articles/4-1030/v1

DREAMTools, Release 1.3.0

2. The References of DREAMTools itself

3. Notebooks provided in DREAMTools. There are only a few at the moment but contributions are welcome
and will be added.

4. Notebooks

3.3 For developers

3.3.1 How to structure a new challenge:

If you wish to include a scoring function in DREAMTools, we provide an executable called dreamtools-layout
(from dreamtools.core.layout module). It creates a minimalist layout automatically to help you to start.
You first need to think about a challenge nickname. Let us assume a challenge for DREAM8 session, which is the
fourth one. Its nickname would be D8C4.

First, move in the github tree structure to the dream8 directory:

cd dreamtools
cd dream8

if the directory dream8 does not exist, create it and add an empty file called __init__.py. Then, all you need to
do is to go to dreamtools/dream8 directory and type:

dreamtools-layout --challenge-name D8C4

Some sub directories and files are created including the scoring.py with a basic class where to code or wrap your
scoring function.

If data file or templates are too large, we strongly recommend to store them in a project on Synapse. We have
created a synapse project called dreamtools where for example the D5C2 data files have been stored. Other files
can all be stored there. This may be duplicated with existing projects but would ease the maintenance of the 30-40
DREAM challenges already available in DREAMTools.

3.3.2 Naming conventions

There is no strict conventions but to help creating more uniformed code, try to name the template after the chal-
lenge nicknname for instance D3C1_template. Irrespective of the name, place it in the templates/ directory.
Similarly for gold standards: start the filename with D3C1_goldstandard tag.

Again, if those files are too large, consider placing them in synapse and use tools inside DREAMTools to retrieve
them automatically (see below).

3.3.3 Basic Structure of the Challenge class

import os
from dreamtools.core.challenge import Challenge

class D7C4(Challenge):
"""A class dedicated to D7C4 challenge

::

from dreamtools import D7C4
s = D7C4()

12 Chapter 3. Full documentation

https://github.com/dreamtools/dreamtools/tree/master/notebooks
https://www.synapse.org/#!Synapse:syn4483180

DREAMTools, Release 1.3.0

filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

"""
def __init__(self, verbose=True, download=True, **kargs):

""".. rubric:: constructor"""
super(D7C4, self).__init__('D7C4', verbose, download, **kargs)
self._init()
if several sub-challenges, name them here
self.sub_challenges = []

def _init(self):
should download files from synapse if required.
pass

def score(self, prediction_file):
raise NotImplementedError

def download_template(self):
should return full path to a template file
self.getpath_template('filename_in_templates_directory')

def download_goldstandard(self):
should return full path to a template file
self.getpath_goldstandard('filename_in_goldstandard_directory')

3.3.4 Storing large files

Templates and gold standards are either stored within the DREAMTools package or, if there are too large, on the
Synapse web site. In the latter case, the files will be downloaded on request (only once). You should therefore not
change those files, which are located in the DREAMTools directory (e.g., /home/user/.config/dreamtools). The
downloaded files are stored in specific directories. For instance, files related to the D9C1 challenge are stored in
/home/user/.config/dreamtools/dream9/D9C1.

So, as developers, you should also figure out if a file should be stored in Synapse or not. Large files are currently
stored in this synapse page dreamtools

If your class inherits from dreamtools.core.challenge.Challenge, you can then just type this kind
of command to (1) download the file and get its local location:

filename = self._download_data('DREAM5_GoldStandard_probes.zip',
'syn2898469')

In this example, the file DREAM5_GoldStandard_probes.zip is stored in this directory:
/home/user/.config/dreamtools/dream5/D5C2 for the example above.

3.3.5 License/header

Please add this header at the top of your Python files:

-*- python -*-
-*- coding: utf-8 -*-
#
This file is part of DREAMTools software
#

3.3. For developers 13

https://www.synapse.org/#!Synapse:syn4483180

DREAMTools, Release 1.3.0

Copyright (c) 2015-2016, DREAMTools Development Team
All rights reserved
#
Distributed under the BSD 3-Clause License.
See accompanying file LICENSE distributed with this software
#
File author(s): Your name <youremail>
#
website: http://github.com/dreamtools
#
###

3.4 References

3.4.1 CORE modules

Contents

• CORE modules
– Challenge
– Rocs
– settings
– Synapse utilities
– Ziptools
– Downloader
– Layout
– Concordance Index

Challenge

Common utility to all challenges

class LocalData
Used by Challenge

getpath_data(filename)

getpath_gs(filename)

getpath_lb(filename)

getpath_template(filename)
Return full path of the template location named filename

class Challenge(challenge_name, verbose=False, download=True, **kargs)
Common class to all challenges

If you have not setup a .synapseConfig in your HOME, you must provide a synapse client

from dreamtools import *
s = Challenge('D2C1')
client = Login(username=username, password=pwd).client
s.client = client

14 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

constructor

Parameters challenge_name (str) – Must be formatted as DXCY where X and Y are
numbers. Intermediate challenges from e.g. D9.5 should be encoded as D9dot5CY

debug = None
alias of the challenge as DXCY form with X, Y being 2 numbers

directory
Gets directory where data will be stored.

download_template(sub_challenge=None)
Must be provided

get_pathname(filename)
Return pathname of a file to be found on ./config/dreamtools if available

import_scoring_class()
Dynamic import of a challenge class

c = Challenge('D7C1')
inst_class = c.import_scoring_class()

loadmat(filename)
Load a MATLAB matrix

mainpath = None
directory where is stored the configuration file and data files.

mkdir()
Create local dreamtools directory

onweb()

score(filename, sub_challenge=None)
Must be provided

test()

unzip(filename)
Simple method to extract all files contained in an archive

Rocs

Provides tools related to Receiver Operating Characteristic (ROC).

Those codes were directly translated from Perl or matlab codes. We should be using scikit-learn in the future.

class ROC(scores=None, classes=None)
A class to compute ROC, AUC and AUPRs for a binary problem

>>> r = ROC() # could provide scores and labels as arguments
>>> r.scores = [0.9,0.8,0.7,.6,.6,.3]
>>> r.classes = [1,0,1,0,1,1]
>>> r.compute_auc()
0.4375

Constructor

Parameters

3.4. References 15

http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

• scores (list) – the scores

• classes (list) – binary class made of 1 or 0 numerical values. Also called labels in
the literature.

classes
Read/Write the classes

get_roc()
See get_statistics()

get_statistics()
Compute the ROC curve X/Y vectors and some other metrics

Returns a dictionary with different metrics such as FPR (false positive rate), PTR (true
positive rate).

plot_roc(roc=None)
Plot ROC curves

from dreamtools.core.rocs import ROC
r = ROC()
r.scores = [.9,.5,.6,.7,.1,.2,.6,.4,.7,.9, .2]
r.classes = [1,0,1,0,0,1,1,0,0,1,1]
r.plot_roc()

scores
Read/Write the scores

class ROCDiscovery(discovery)
A variant of ROC statistics

Used in D5C2 challenge.

Note: Does not work if any NA are found.

constructor

Parameters discovery – a list of 0/1 where 1 means positives

compute_aupr(roc=None)
Returns AUPR normalised by (1-1/P) P being number of positives

get_statistics()
Return dictionary with FPR, TPR and other metrics

class D3D4ROC

get_statistics(gold_data, test_data, gold_index)

plot()

MCC(TP, TN, FP, FN)
Matthews correlation coefficient

settings

Tools to handle a configuration file.

class DREAMToolsConfig(verbose=False)

16 Chapter 3. Full documentation

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#list

DREAMTools, Release 1.3.0

Synapse utilities

A module dedicated to synapse

The class SynapseClient is a specialised class built upon synapseclient package, which source code is on
GitHub:

git clone git://github.com/Sage-Bionetworks/synapsePythonClient.git
cd synapsePythonClient
python setup.py install

This class may be removed but for now it is used in D8C1 challenge.

>>> from dreamtools.core import sageutils
>>> s = sageutils.SynapseClient()

class SynapseClient(username=None, password=None)
This class inherits all methods from synapseClient.

Be aware that most of the functionalities are now available in synapseclient itself. So, most of the methods
that were written are hidden (double underscore) and may be removed in the future.

The only remaining feature is the automatic login, and simple version of the downloadSubmission method.
There is also a json() method used throughout the dream8hpn code.

Constructor

Parameters

• username – your synapse usename

• password – your synapse password

You can create create a file called .synapseConfig (note the dot) in your home directory and add something
like:

[authentication]
username: yourlogin
password: yourpassword

downloadSubmissionAndFilename(sub, downloadFile=True, **kargs)
Return filename of a submission downloaded from synapse.

Parameters

• sub – A submission (as a dictionary).

• version – The specific version to get. Defaults to the most recent version.

• downloadFile – Whether associated files(s) should be downloaded. Defaults to
True. If set to False, downloadLocation and ifcollision are ignored

• downloadLocation – Directory where to download the Synapse File Entity. De-
faults to the local cache.

• ifcollision – Determines how to handle file collisions. May be “overwrite.local”,
“keep.local”, or “keep.both”. Defaults to “keep.both”.

Warning: ifcollision does not seem to work (0.5.1)

3.4. References 17

DREAMTools, Release 1.3.0

getMyProfile()
Returns user profile

json(data)
Transform relevant object into json object

class Login(client=None, username=None, password=None)
A simple class to login to synapse

Parameters client – Connection to synapse takes a couple of seconds. This may be too
much if in a debugging mode or accessing to synapse from different places. The login can
be instantiate with an existing instance of SynapseClient, if which case, the instance creation
is fast. Otherwise, the default behaviour is to create a new connection.

>>> from dreamtools.core.sageutils import Login
>>> l = Login()
This is a SynapseClient built on top of Synapse class.
Trying to login automatically.
Welcome, *****************
You're logged in Synapse
Welcome, XXX

In [10]: l = sageutils.Login(l)

Ziptools

class ZIP
Simple utility to load a ZIP file

Note: could be moved to easydev package

extractall(path)

loadZIPFile(filename)
Loads a ZIP file

This method uses the zipfile module and stores the data into zip_data. The filenames contained
within this archive can be found in zip_filenames. To read the data contained in the first filename,
type:

self.zip_data.open(self.filenames[0].read()

Parameters filename (str) – the ZIP filename to load

read(filename)

Downloader

Utility to download a synapse project in the dreamtools directory

class Downloader(challenge, client=None, username=None, password=None)
Factory to download gold standard files

Download a synpase file once for all in the dreamtools directory.

18 Chapter 3. Full documentation

http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

constructor

Parameters challenge (str) – alias of a challenge (e.g., D5C1)

To automatically connect to synapse, create a file called .synapseConfig with this content:

[authentication]
username: email
password: password

download(synid)
Download a file into the dreamtools directory

Parameters synid – a valid synapse id (e.g., syn123456)

You must have a login on synapse website.

Layout

Layout to create a new challenge from scratch

class Layout(name, verbose=True)
Class to create automatic layout for a given challenge

Usage

dreamtools-layout --name D8C2

Warning: for developers only.

create_layout()

layout(args=None)
This function is used by the standalone application called dreamscoring

dreamtools-layout --help

Concordance Index

Concordance index computation (exact version)

Based on R code provided by Ben Sauerwine and Erhan Bilal double checked with concordance.index from
survcomp R package.

class ConcordanceIndex(survtime=None, survevent=None)
See cindex() function for details

cindex(prediction)
Returns concordance index

cindex(prediction, survtime, survevent)
Function to compute the concordance index for a risk prediction, i.e., the probability that, for a pair of
randomly chosen comparable samples, the sample with the higher risk prediction will experience an event
before the other sample or belongs to a higher binary class.

Parameters

• prediction – a vector of risk predictions.

3.4. References 19

http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

• survtime – a vector of event times.

• survevent – a vector of event occurence indicators (True and False).

>>> from dreamtools.core.cindex import cindex
>>> print(cindex([0, 1, 3,4], [0, 4, 3, 1], [True]*4))
0.5
>>> print(cindex([0, 1, 3,4], [0, 1, 3, 4], [True]*4))
0.0

concordanceIndex(prediction, survtime, survevent)

3.4.2 DREAM challenges

Contents

• DREAM challenges
– DREAM2

* D2C1
* D2C2
* D2C3
* D2C4
* D2C5

– DREAM3
* D3C1
* D3C2
* D3C3
* D3C4

– DREAM4
* D4C1
* D4C2
* D4C3

– DREAM5
* D5C1
* D5C2
* D5C3
* D5C4

– DREAM6
* D6C1
* D6C2
* D6C3
* D6C4

– DREAM7
* D7C1
* D7C2
* D7C3
* D7C4

– DREAM8
* D8C1
* D8C2

– DREAM9
* D9C1
* D9C2

– DREAM9.5
* D9dot5C1

– DREAM10

20 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

DREAM2

D2C1

D2C2 scoring function

Class imlemented in Python based on original code in MATLAB from Gustavo A. Stolovitzky.

class D2C1(verbose=True, download=True, **kargs)

download_goldstandard()
Returns D2C1 gold standard file location

download_template()
Returns D2C1 template location

load_leaderboard()

score(filename)
Returns statistics (e.g. AUPR/AUROC)

Parameters filename (str) – a valid filename as returned by
download_template()

score_and_compare_with_lb(filename)
Example of a comparative leaderboard that scores

D2C2

D2C2 scoring function.

Implementation in Python based on a MATLAB code from Gustavo A. Stolovitzky

class D2C2(verbose=True, download=True, **kargs)
A class dedicated to D2C2 challenge

from dreamtools import D2C2
s = D2C2()
filename = s.download_template()
s.score(filename)

constructor

download_goldstandard()
Returns the gold standard

download_template()
Returns a valid template

score(filename)
Returns statistics (e.g. AUROC)

Parameters filename (str) – a valid filename as returned by
download_template()

D2C3

D2C3 scoring functions

The original algorithm was developed in MATLAB by Gustavo Stolovitzky

3.4. References 21

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

class D2C3(verbose=True, download=True, **kargs)
A class dedicated to D2C3 challenge

from dreamtools import D2C3
s = D2C3()
subname = "DIRECTED-UNSIGNED_qPCR"
filename = s.download_template(subname)
s.score(filename, subname)

There are 12 gold standards and templates. There are scored independently (6 for the chip case and 6 for
the qPCR).

Although there is no sub-challenge per se, there are 12 different templates so we use the template names as
sub-challenge names

constructor

download_goldstandard(subname=None)
Returns one of the 12 gold standard files

Parameters subname – one of the sub challenge name. See sub_challenges

download_template(subname=None)

score(filename, subname=None)

sub_challenges = None
sub challenges (12 different values)

D2C4

D2C4 scoring function

original code in MATLAB by Gustavo Stolovitzky

class D2C4(verbose=True, download=True, **kargs)
A class dedicated to D2C4 challenge

from dreamtools import D2C4
s = D2C4()
subname = 'DIRECTED-UNSIGNED_InSilico1'
filename = s.download_template(subname)
s.score(filename, subname)

constructor

download_goldstandard(subname=None)

download_template(subname=None)

score(filename, subname=None, goldstandard=None)

sub_challenges = None
12 different sub challenges

22 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

D2C5

D2C5 scoring functions

Original code in MATLAB by Gustavo Stolovitzky

class D2C5(verbose=True, download=True, **kargs)
A class dedicated to D2C5 challenge

from dreamtools import D2C5
s = D2C5()
subname = "UNSIGNED"
filename = s.download_template(subname)
s.score(filename, subname)

constructor

download_goldstandard(subname=None)

download_template(subname=None)

score(filename, subname=None, goldstandard=None)

DREAM3

D3C1

D3C1 scoring function

Original matlab code from Gustavo A. Stolovitzky and Robert Prill.

class D3C1(verbose=True, download=True, **kargs)
D3C1 scoring function to evaluate the accuracy of a prediction

from dreamtools import D3C1
s = D3C1()
filename = s.download_template()
s.score(filename)

download_goldstandard()

download_template()
Return filename of a template to be used for testing

probability(x)

score(filename)
Scoring function

Returns tuple with first element being the number of correct predictions and second element
being the pvalue

D3C2

D3C2 scoring function

Implemented after an original MATLAB code from Gustavo Stolovitzky and Robert Prill.

3.4. References 23

DREAMTools, Release 1.3.0

class D3C2(verbose=True, download=True, **kargs)
A class dedicated to D3C2 challenge

from dreamtools import D3C2
s = D3C2()
filename = s.download_template('cytokine')
s.score(filename, 'cytokine')

filename = s.download_template('phospho')
s.score(filename, 'phospho')

Data and templates are downloaded from Synapse. You must have a login.

constructor

download_goldstandard(subname)

download_template(name)

score(filename, subname)
Returns score of a prediction

D3C3

D3C3 scoring function

Original matlab version (Gustavo A. Stolovitzky, Ph.D. Robert Prill) translated into Python by Thomas Cokelaer.

class D3C3(verbose=True, download=True, **kargs)
A class dedicated to D3C3 challenge

from dreamtools import D3C3
s = D3C3()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

Note: the spearman pvalues are computed using R and are slightly different from the official code that
used matlab. The reason being that the 2 implementations are different. Pleasee see cor.test in R and corr()
function in matlab for details. The scipy.stats.stats.spearman has a very different implementation for small
size cases.

constructor

download_goldstandard()

download_template()

score(filename)

D3C4

Implementation in Python from Thomas Cokelaer. Original code in matlab (Gustavo Stolovitzky and Robert Prill).

24 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

class D3C4(verbose=True, download=True, **kargs)
A class dedicated to D3C4 challenge

from dreamtools import D3C4
s = D3C4()
filename = s.download_template(10)
s.score(filename)

Note: AUROC/AUPR and p-values are returned for a given sub-challenge. In the DREAM LB, the 5
networks are combined together. We should have same implemntatin as in D4C2

constructor

download_goldstandard(subname)

download_template(subname)

plot(filename, size, batch)

score(filename, subname)

score_prediction(filename, subname)

Parameters

• filename –

• size –

• name –

Returns

DREAM4

D4C1

D4C1 scoring function

Based on an original matlab code from Gustavo A. Stolovitzky, and Robert Prill.

class D4C1(verbose=True, download=True, **kargs)
A class dedicated to D4C1 challenge

from dreamtools import D4C1
s = D4C1()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

constructor

download_goldstandard()

download_template()

score(filename)

3.4. References 25

DREAMTools, Release 1.3.0

score_kinases()

score_pdz()

score_sh3()

D4C2

D4C2 scoring function

From an original code in matlab (Gustavo Stolovitzky and Robert Prill).

class D4C2(verbose=True, download=True, **kargs)
A class dedicated to D4C2 challenge

from dreamtools import D4C2
s = D4C2()
filename = s.download_template(10,)
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

constructor

directed_to_undirected()

download_goldstandard(subname)

download_template(subname)

load_prob(filename)

plot(filename, subname)

score(filename, subname=None)

score_prediction(filename=None, subname=None)
This is a longish scoring function translated from the matlab original code of D4C2

Parameters

• filename –

• tag –

• batch –

Returns

Todo

merge this function with the one from D4C2

D4C3

D4C3 scoring function

Based on Matlab script available on https://www.synapse.org/#!Synapse:syn2825304, which is an original code
from Gustavo A. Stolovitzky and Robert Prill.

class D4C3(verbose=True, download=True, edge_count=None, cost_per_link=0.0827, **kargs)
A class dedicated to D4C3 challenge

26 Chapter 3. Full documentation

https://www.synapse.org/#!Synapse:syn2825304

DREAMTools, Release 1.3.0

from dreamtools import D4C3
s = D4C3()
filename = s.download_template()
s.edge_count = 20
s.score(filename)

Data and templates are inside Dreamtools.

Note: A parameter called cost_per_link is hardcoded for the challenge. It was compute as min {Prediction
Score / Edge Count} amongst all submissions. For this scoring function, cost_per_link is set to 0.0827
and may be changed by the user.

constructor

Parameters

• edge_count (int) – if not provided, a prompt will ask for its value.

• cost_per_link (float) – a cost

download_goldstandard()

download_template()

plot()
Plots prediction versus gold standard for each species

from dreamtools import D4C3
s = D4C3()
filename = s.download_template()
s.edge_count = 20
s.score(filename)
s.plot()

score(filename)
Compute the score

See synapse page for details about the scoring function.

DREAM5

D5C1

D5C1 scoring function

From an original matlab code from Gustavo A. Stolovitzky, Robert Prill

class D5C1(verbose=True, download=True, **kargs)
A class dedicated to D5C1 challenge

from dreamtools import D5C1
s = D5C1()
filename = s.download_template()
s.score(filename)

3.4. References 27

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float

DREAMTools, Release 1.3.0

constructor

download_goldstandard()

download_template()

score(filename)

Returns dictionay with AUC/AUPR metrics and score.

D5C2

D5C2 challenge scoring functions

Based on TF_web.pl (perl version) provided by Raquel Norel (Columbia University/IBM) also used by the web
server http://www.ebi.ac.uk/saezrodriguez-srv/d5c2/cgi-bin/TF_web.pl

This implementation is independent of the web server.

class D5C2(verbose=True, download=True, tmpdir=None, Ntf=66, **kargs)
A class dedicated to D5C2 challenge

from dreamtools import D5C2
s = D5C2()

You can get a template from www.synapse.org page (you need
to register)
filename = s.download_template()
s.score(filename) # takes about 5 minutes
s.get_table()
s.plot()

Data and templates are downloaded from Synapse. You must have a login.

constructor

Parameters

• Ntf – not to be used. Used for fast testing and debugging

• tmpdir – a local temporary file if provided.

cleanup()
Remove the temporary directory

compute_statistics()
Returns final results of the user predcition

Returns a dataframe with various metrics for each transcription factor.

Must call score() before.

download_all_data()
Download all large data sets from Synapse

download_goldstandard()

download_template()
Download a template from synapse into ~/config/dreamtools/dream5/D5C2

Returns filename and its full path

28 Chapter 3. Full documentation

http://www.ebi.ac.uk/saezrodriguez-srv/d5c2/cgi-bin/TF_web.pl

DREAMTools, Release 1.3.0

get_table()
Return table with user results from the user and participants

There are 14 participants as in the Leaderboard found here
https://www.synapse.org/#!Synapse:syn2887863/wiki/72188

Returns a dataframe with different metrics showing performance of the submission with
respect to other participants.

table = s.get_table()
with open('test.html', 'w') as fh:

fh.write(table.to_html(index=False))

init()
Creates the temporary directory and the sub directories.

Behaviour differs whether the directory was provided in the constructor or not.

plot(fontsize=16)
Show the user prediction compare to 20 other participants

score(prediction_file)
Compute all results and compare prediction with official participants

This scoring function can take a long time (about 5-10 minutes).

D5C3

D5C3 scoring function

Original matlab code from Gustavo A. Stolovitzky, Robert Prill, Ph.D. sub challenge B original code in R from A.
de la Fuente

class D5C3(verbose=True, download=True, **kargs)
A class dedicated to D5C3 challenge

from dreamtools import D5C3
s = D5C3()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

3 subchallenges (A100, A300, A999) but also 3 others simpler with B1, B2, B3

For A series, 5 networks are required. For B, 3 are needed.

constructor

download_goldstandard(subname)

download_template(subname)

score(filename, subname)

score_challengeA(filename, subname)

score_challengeB(filenames)

3.4. References 29

https://www.synapse.org/#!Synapse:syn2887863/wiki/72188

DREAMTools, Release 1.3.0

D5C4

D5C4 scoring function

Based on original matlab code from Gustavo A. Stolovitzky and Robert Prill

class D5C4(verbose=True, download=True, **kargs)
A class dedicated to D5C4 challenge

from dreamtools import D5C4
s = D5C4()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

constructor

download_goldstandard()

download_template()

score(filenames)

score_challengeA(filename, tag)

Parameters

• filename –

• tag –

Returns

DREAM6

D6C1

D6C1 scoring function

scoring author: bobby prill

class D6C1(verbose=True, download=True, **kargs)
A class dedicated to D6C1 challenge

from dreamtools import D6C1
s = D6C1()
filename = s.download_template()
s.score(filename)

Todo

not yet implemented. Requires code to compute the recall and precision from the GS and submission.

constructor

download_goldstandard()

30 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

download_template()

score(filename)

D6C2

D6C2 scoring function

See D7C1

class D6C2(verbose=True, download=True, **kargs)
A class dedicated to D6C2 challenge

from dreamtools import D6C2
s = D6C2()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

constructor

download_goldstandard()

download_template()

score(prediction_file)

D6C3

D6C3 scoring function

Based on Pablo’s Meyer Matlab code.

class D6C3(verbose=True, download=True, **kargs)
A class dedicated to D6C3 challenge

from dreamtools import D6C3
s = D6C3()
filename = s.download_template()
s.score(filename)

Absolute score in the Pearson coeff but other scores such as chi-square and rank are based on the 21st
participants.

Pearson and spearman gives same values as in final LB but X2 and R2 are slightly different.
Same results as in the original matlab scripts so the different with the LB is probably coming
fron a different set of predictions files, which is stored in ./data/predictions and was found in
http://genome.cshlp.org/content/23/11/1928/suppl/DC1

The final score in the official leaderboard computed the p-values for each score (chi-square, r-square, spear-
man and pearson correlation coefficient) and took -0.25 log (product of p-values) as the final score.

constructor

download_goldstandard()

download_template()

3.4. References 31

http://genome.cshlp.org/content/23/11/1928/suppl/DC1

DREAMTools, Release 1.3.0

read_all_participants()

score(filename)

D6C4

Original scoring function: Kelly Norel

class D6C4(verbose=True, download=True, **kargs)
A class dedicated to D6C4 challenge

from dreamtools import D6C4
s = D6C4()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

constructor

download_goldstandard()

download_template()

score(filename)

DREAM7

D7C1

DREAM7 Challenge 1 (Parameter estimation and network topology prediction)

References

• http://dreamchallenges.org/project-list/dream7-2012/

• https://www.synapse.org/#!Synapse:syn2821735/wiki/

Publications http://www.biomedcentral.com/1752-0509/8/13/abstract

class D7C1(verbose=True, download=True, path=’submissions’, **kargs)
DREAM 7 - Network Topology and Parameter Inference Challenge

Here is a quick example on calling the scoring methods:

from dreamtools import D7C1
s = D7C1()
s.score_model1_timecourse(filename)
s.score_model1_parameters(filename)
s.score_topology(filename)

This class provides 3 main scoring functions:

1.score_topology()

2.score_model1_timecourse()

3.score_model1_parameters()

32 Chapter 3. Full documentation

http://dreamchallenges.org/project-list/dream7-2012/
https://www.synapse.org/#!Synapse:syn2821735/wiki/
http://www.biomedcentral.com/1752-0509/8/13/abstract

DREAMTools, Release 1.3.0

Each takes as an input a valid submission as described in the official synapse page.

Templates are also provided within the source code on github dreamtools in the directory dream-
tools/dream7/D7C1/templates.

D7C1 scoring function are also included in the standalone code dreamtools-scoring.

For the details of the scoring functions, please refer to the paper (see module documentation) Some details
are provided in the methods themselves as well.

There are other methods (starting with leaderboard) that should not be used. Those are draft version used to
compute pvalues and report scores as in the final leaderboard.

Note: the scoring functions were implemented following Pablo Meyer’s matlab code-
score_dream7_c1s1.m

For admin only: put the submissions in ./submissions/ directory and call the :meth:

constructor

Parameters path – path to a directory containing submissions

Returns

download_goldstandard(name)

download_template(name)
Return filename of a template

Parameters name (str) – one in ‘topology’, ‘parameter’, ‘timecourse’

get_null_parameters_model1(N=10000)
Returns score distribution (parameter model1)

get_null_timecourse_model1(N=10000)

get_null_topology(N=10000)
Return null distribution of the topology score

get_pvalues_parameter(score)

get_pvalues_timecourse(score)

get_pvalues_topology(x)
Return pvalues of a given score (topology challenge)

get_random_topology()

leaderboard()
Computes all scores for all submissions and returns dataframe

Returns dataframe with scores for each submissions for the model1 (parameter and time-
course) and model2 (topology)

leaderboard_compute_score_parameters_model1()
Computes all scores (parameters model1)

Returns Nothing but fills scores.

For the metric, see score_model1_parameters().

See also:

load_submissions()

leaderboard_compute_score_timecourse_model1(startindex=10, endindex=39)
Computes all scores (timecourse model1)

3.4. References 33

https://www.synapse.org/#!Synapse:syn2821735/wiki/
https://github.com/dreamtools
http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

Returns Nothing but fills scores

For the metric, see score_model1_parameters().

Note that endindex is set to 39 so it does not take into account last value at time=20 This is to be in
agreement with the implemenation used in the final leaderboard

https://www.synapse.org/#!Synapse:syn2821735/wiki/71062

If you want to take into account final point, set endindex to 40

leaderboard_compute_score_topology()
Computes all scores (topology) for loaded submissions

For the metric, see score_topology().

Returns fills scores.

See also:

load_submissions()

load_submissions()
Load a bunch of submissions to be found in the submissions directory

The directory name is defined in path

Returns nothing. Populates data attribute and team_names.

score(filename, subname=None)
Return score for a given sub challenge

Parameters filename (str) – input filemame.

Returns name of a sub_challenge. See sub_challenges attribute.

score_model1_parameters(filename)
Return distance between submission and gold standard for parameters challenge (model1)

Parameters filename – must be valid templates

Returns score (distance)

>>> from dreamtools import D7C1
>>> s = D7C1()
>>> filename = s.download_template('parameter')
>>> s.score(filename, 'parameter')
0.022867555017785129

The score is computed using the square of the ratio of the user prediction and the gold standard. Taking
the mean of the log10 :

𝑆 = log 10

(︃(︂
𝑋

𝑋gold standard

)︂2
)︃

score_model1_timecourse(filename)
Returns distance between prediction and gold standard (model1)

Parameters filename – must be valid templates

Returns score (distance)

>>> from dreamtools import D7C1
>>> s = D7C1()
>>> filename = s.download_template('timecourse')
>>> s.score_model1_timecourse(filename)
0.0024383612676804048

34 Chapter 3. Full documentation

https://www.synapse.org/#!Synapse:syn2821735/wiki/71062
http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

There are 3 time courses to be predicted. The score for each time course is

𝑆𝑖 =
(𝑋𝑖 −𝑋𝑖)

2

0.01 + 0.04 *𝑋2
𝑖

where 𝑋 is the gold standard and 𝑋̂ the prediction. and final score is just the average across the 3 time
courses.

score_topology(filename)
Standalone version of the network topology scoring

Parameters filename (str) –

>>> from dreamtools import D7C1
>>> s = D7C1()
>>> filename = s.download_template('topology')
>>> s.score(filename, 'topology')
12

Scoring details The challenge requests predictions for 3 missing links, knowing that a gene
can regulate up to two genes when they are in the same operon, 6 gene interactions have
to be indicated by the participants (3 links*2 genes) and whether these interactions are
activating (+) or repressing (-).

For each of the predicted links i=1,2,3, we define a score:

𝑆𝑙𝑖𝑛𝑘
𝑖 = 𝐿𝑖 +𝑁𝑖

where 𝐿𝑗 is 6 if the nature of the regulation iscorrect (that is, the source gene, the sign of
the connection, and the destination gene are all correct) and 𝐿𝑖 = 12 if the link regulates
an operon composed of two genes and both connections are correct. If 𝐿𝑖 > 0 then
𝑁𝑖 = 0.

In case a link is NOT correctly predicted (𝐿𝑖 = 0) 𝑁𝑖 is defined as follows. It is increased
by 1 for each correctly regulated gene, 2 if the regulated gene and the nature of the
regulation (i.e +/-) are correct and 1 if the regulator gene is correct

The gold standard contains 3 lines similar to

5 + 7 + 11

It means gene 5 positively regulates gene 7 and gene 11. If a prediction is

5 + 7 + 2

Then L =6. If the prediction is

2 + 7 + 2

L = 0 so N may be updated. Here the regulon (2) is not correct, However, one gene (7)
is correctly predicted with the good sign so N = 2.

3.4. References 35

http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

D7C2

class D7C2(verbose=True, download=True, **kargs)
A class dedicated to D7C2 challenge

from dreamtools import D7C2
s = D7C2()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

as R objects implementing a function called customPredict() that returns a vector of risk predictors when
given a set of feature data as input. The customPredict()

constructor

download_goldstandard(subname=None)

download_template(subname=None)

score(filename)

D7C3

class D7C3(verbose=True, download=True, **kargs)
A class dedicated to D7C3 challenge

from dreamtools import D7C3
s = D7C3()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

constructor

download_goldstandard(subname=None)

download_template(subname=None)

score(filename, subname=None, goldstandard=None)

D7C4

Original code for challenge B translted from Mukesh Bansal Sub challenge A is currently a wrapping of a perl
code provided by Jim Costello

class D7C4(verbose=True, download=True, **kargs)
A class dedicated to D7C4 challenge

from dreamtools import D7C4
s = D7C4()
filename = s.download_template()
s.score(filename)

36 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

Data and templates are downloaded from Synapse. You must have a login.

columns represent the probabilistic c-index of the given team for
each drug.

following the columns of teams are 5 columns which are used for
calculating the overall team score

|-> Test_data = the probabilistic c-index for the experimentally
determined test data scored against itself

|-> Mean Null Distribution = a set of 10,000 random predictions
were scored to create the null distribution, of which this column
represents the mean

|-> SD Null Distribution = a set of 10,000 random predictions
were scored to create the null distribution, of which this column
represents the standard deviation

|-> z-score of test data to null = score of the test data minus
the mean of the null distribution divided by the standard deviation
of the null distribution

|-> weight of drug (normalized z-score) = the z-score normalized
by the largest z-score across all 31 drugs.

to calculate your team overall score, simply mulitple the score
of all drugs by the corresponding weight. Divide the sum of these
weighted scores by the sum of the weights

constructor

This challenge uses PERL script that requires specific packages.

First, you need cpanm tools (http://search.cpan.org/dist/App-cpanminus/)

Under Fedora 23:

sudo dnf install perl-App-cpanminus

Then, install the dependencies that will be required

sudo cpanm install Math::Libm sudo cpanm install Algorithm::Pair::Best2 sudo cpanm install
Digest::SHA1 sudo cpanm install Tk sudo cpanm install Games::Go::AGATourn

finally install the Games-go-GoPair.tar.gz package stored in dreamtools github repositotry in dream-
tools/dreamt7/D7C4/misc:

cd dreamtools/dream7/D7C4/misc
tar xvfz Games-Go-GoPair-1.001.tar.gz
cd Games-Go-GoPair-1.001
perl Makefile.PL
make
sudo make install

download_goldstandard(subname)

download_template(subname)

score(filename, subname)

score_A(filename)

score_B(filename)

3.4. References 37

http://search.cpan.org/dist/App-cpanminus/

DREAMTools, Release 1.3.0

DREAM8

D8C1

This module provides utilities to compute scores related to HPN-Dream8

It can be used and should be used indepently of Synapse altough for testing, data sets may be downloading from
synapse if you don’t have any local files to play with.

Here is an example related to the Network subchallenge:

>>> from dreamtools.dream8.D8C1 import scoring
>>> s = scoring.HPNScoringNetwork()
>>> s.compute_all_descendant_matrices()
>>> s.compute_all_rocs()
>>> s.compute_all_aucs()

https://www.synapse.org/#!Synapse:syn1720047/wiki/60530

class HPNScoringNetwork(filename=None, verbose=False, true_descendants=None)
Class to compute the score of a Network submission

A user will provide a ZIP file that contains 65 files: 32 EDA, The 32 files should be tagged with the 32
combos of cell lines and ligands. To create an instance of HPNScoringNetwork, type:

s = HPNScoringNetwork("TeamName-Network.zip")
or later
s = HPNScoringNetwork()
s.load_submission("TeamName-Network.zip")

s.get_auc_final_scoring() # as in the challenge ignoring some regimes

You then need to specifically load the EDA files. This may be done with
load_all_eda_files_from_zip():

s.load_all_eda_files_from_zip()

The content of the ZIP file can be validated using the validation() method.:

s.validation()

Each EDA and SIF file must be a complete graph where all species correspond to the CSV files provided on
the synapse web page. The size of the network varies depending on the cell line.

Each EDA file that contains score on each edge and first needs to be transformed into a descendancy matrix.
This is achieve via compute_descendant_matrix() and/or compute_descendant_matrix()
methods.:

s.compute_all_descendant_matrices()

From each matrix, we’d like to compare a specific row (corresponding to mTOR) to the true scores that are
expected. The true descendant for each combinaison of cell line and ligand are provided and loaded in the
constructor via load_true_descendants_from_zip(), which can be called at any time.

Parameters filename (str) –

compute_all_aucs()
Computes all AUC

38 Chapter 3. Full documentation

https://www.synapse.org/#!Synapse:syn1720047/wiki/60530
http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

This function can be called once EDA files are loaded and all descendant matrices have been computed
as well.

In theory, one should compute ROC and then AUC but this function recomputes ROC since it is fast
to compute.

See also:

load_all_eda_files_from_zip(), compute_all_descendant_matrices()

compute_all_auprs()

compute_all_descendant_matrices()
Compute all descendancy matrices

For each cell line and ligand, the matrix is stored in the edge_scores dictionary.

See also:

compute_descendant_matrix()

compute_all_metrics()

compute_all_rocs()
Computes all ROC curves

This function can be called once EDA files are loaded and all descendant matrices have been computed
as well.

See also:

load_all_eda_files_from_zip(), compute_all_descendant_matrices()

compute_auc(roc)
Compute AUC given a ROC data set

Parameters roc (str) – The roc data structure must be a dictionary with “tpr” key. Could
be an variable returned by compute_roc().

compute_aupr(roc)

compute_descendant_matrix(cellLine, ligand)
Computes the descendancy matrix for a given cell line and ligand

Parameters

• cellLine (str) – a valid cell line

• ligand (str) – a valid ligand

Note: we use a cython module to conmpute the matrix. This function is the bottle neck of the entire
procedure to compute the score. This is especially important to estimate te null distribution of the
AUCs. Using Cython does not improve much the performance (80%) but it improves it...

See also:

compute_all_descendant_matrices()

compute_metrics(cellLine, ligand)

compute_other_metrics(roc)

compute_roc(cellLine, ligand)
Compute the ROC curve

Parameters

• scores – list of scores (probabilities)

• classes – list of classes (true values)

3.4. References 39

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

DREAMTools, Release 1.3.0

See also:

compute_roc()

compute_score(validation=True)
Computes the final score that is the average over the 32 AUCs

This function compute the final score. First, il loads all EDA files provided by the participany (from
the ZIP file). Then, it computes the 32 descendant matrices. Finally, it computes the 32 ROCS and
AUCS. The scores is for now based on the z-score. Since scores must be between 0 and 1, where 0 is
the best, we will need to normalise.

Parameters validation (bool) – perform validation of the input ZIP file

edge_score_to_eda_files(teamname)

get_auc_final_scoring()
This function returns the mean AUC using only official ligands as used in final scoring and collabora-
tive rounds.

The individual AUCs must be computed first with compute_all_aucs() or .:

>>> s = scoring.HPNScoringNetwork(filename)
>>> auc = s.get_auc_final_scoring()

get_aucs()
Returns all AUCs

get_average_auc()
Returns mean of all AUCs

get_mean_and_sigma_null_parameters()
Retrieve mean and sigma for 32 combi from a null AUC distribution

get_mean_zscores(aucs=None)

get_null_distribution(sample=100, cellLine=’BT20’, ligand=’EGF’, store_rocs=False,
distr=’uniform’)

Computes the null distribution for a given combinaison

•Creates a uniformly distribution of a EDA file and stores it in the edge_score attribute.

•recompute the corresponding descendancy matrix

•Get the corresponding true prediction

•compute the ROC and AUC

Parameters

• sample (int) – number of distribution to compute

• cellLine –

• ligand –

• store_rocs (bool) – if set to True, save the rocs as well

Returns rocs and aucs (rocs is set to [] for debugging)

from dreamtools.dream8.D8C1 import scoring
from pylab import clf, plot, hist, grid, pi, exp, sqrt, mean, std
s = scoring.HPNScoringNetwork()
rocs, aucs, auprs = s.get_null_distribution(100)
mu = mean(aucs)
sigma = std(aucs)

40 Chapter 3. Full documentation

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool

DREAMTools, Release 1.3.0

clf()
res = hist(aucs,50, normed=True)
plot(res[1], 1/(sigma * sqrt(2 * pi)) * exp(- (res[1] - mu)**2 / (2 * sigma**2)), linewidth=2, color='r')
grid()

get_zscores(aucs=None)

load_all_eda_files_from_zip()
Loads all EDA file from a participant into edge_scores

load_eda_file(filename, local=False)
Loads scores from one EDA file

Parameters filename – here filename should be one of the filename to be found within
the ZIP file! This is not a standard file system (See note).

Input data is EDA format that is:

A 1 B = 0.4
A 1 C = 0.5

It containts edges such that the final graph is complete and a matrix can be built with column1 as the
rows and column2 as the columns. The values being tmade from the fifth column. Second and fourth
are ignored.

loaded data is stored in data as a numpy matrix.

Note: to overwrite the input ZIP file, use loadZIPFile()

load_submission(filename)

plot_all_rocs(cellLines=None)
Plots all 32 ROC once scores/rocs have been computed

from pylab import clf, plot, hist, grid
from dreamtools.dream8.D8C1 import scoring
import os
s = scoring.HPNScoringNetwork()
from dreamtools import D8C1
filename = D8C1().download_template('SC1A')
s.load_submission(filename)
s.compute_score()
s.plot_all_rocs()

plot_roc(cellLine, ligand, hold=False)
Plots a psecific ROC curve

print_aucs()

test_synapse_id = ‘syn1971273’

true_synapse_id = ‘syn1971278’

validation()
General validation

•Check that there are 32 EDA files

•For each EDA file, calls further check

– format of the filename (correct cell line and ligand names)

3.4. References 41

DREAMTools, Release 1.3.0

– format of the dataa = character with a RHS and LHS

– LHS is made of 3 elements

– skip the header

class HPNScoring(verbose=True)
Base class common to all scoring classes

The HPN challenges use data from 32 types of combinaison of cell lines (4) and ligands (8). This class
provides aliases to:

•valid cell lines (valid_cellLines)

•valid ligands (valid_ligands)

•expected length of the vectors for each cell line (valid_length)

•indices of the row vectors containing the mTOR species within the descendancy matrices
(mTor_index)

Note: all matrices and vectors are sorted according to a hard-coded list of species for a combinaison of cell
line and ligand. The species are indeed sorted alphabetically following hhe same order as in the original
CSV files containing the data sets.

In addition, it the score attributes can be used to store the score computed by compute_score() .

All classes that need to compute scores require a data file submitted by a participant. We enforce the usage
of ZIP file, which can be loaded by using loadZIPFile().

error(message)
If you want to raise an error, use this method.

It raises a ScoringException and set the exception attribute. The message is stored in excep-
tion.value If called, the :attr:‘ ‘ is set to “INVALID” and the score is set to 1 (worst score).

load_species()
Loads names of the expected phospho names for each cell line from the synapse files provided to the
users

mTor_index = None
indices of the mTOR species in the different cell lines within

score
R/W attribute to store the score (in [0,1] only)

valid_cellLines = None
List of valid cell lines (e.g, BT20)

valid_length = None
length of the vectors to be found within each cell line

valid_ligands = None
List of valid ligands (e.g, EGF)

class HPNScoringNetworkInsilico(filename=None, verbose=False)
Scoring class for HPN DREAM8 Network Insilico sub challenge

This class retrieves the true graph and a test example from synapse.

from dreamtools.dream8.D8C1 import HPNScoringNetworkInsilico
s = HPNScoringNetworkInsilico()
import os
filename = s.download_template("SC1B")
s.read_file(filename)

42 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

Note: If you want to test your own local file, provide a filename.

auc

compute_score()
The official score for the SC1B challenge

Returns zscore

get_auc()

get_null_auc_aupr(N)
Get null distribution of the AUCs and AUPRs

Parameters N (int) – number of samples

Returns tuple made of 2 lists: the AUCc ad AUPRs

get_roc()
Gets a ROC instance using thegiven the user and true graphs as inputs

get_zscore()
Returns scores for the current submission

Returns

a single value based on the assumption that the distribution of the NULL AUC fol-
lows a gaussian distribution with parameters that are hardcoded as mu=0.497404 and
std=0.037436.

aucs2, auprs2 = s.get_null_auc_aupr(500000) scipy.stats.gamma.fit([x for x in auprs if
numpy.isnan(x)==False]) scipy.stats.norm.fit(aucs)

plot_null_distribution(aucs=None, auprs=None, N=10000)
Plots the null distribution of the AUCs

from dreamtools.dream8.D8C1 import HPNScoringNetworkInsilico
from dreamtools import D8C1
import os

s = HPNScoringNetworkInsilico()
filename = D8C1().download_template('SC1B')
s.read_file(filename)
aucs, auprs = s.get_null_auc_aupr(1000)
s.plot_null_distribution(aucs)
from pylab import xlim
xlim([0.35,0.65])

read_file(filename)

test_synapse_id = ‘syn1973430’

to_eda(filename)
EXports the user EDA file

true_synapse_id = ‘syn1976597’

class HPNScoringNetwork_ranking
This class is used to compute the ranks of the different participants based on an average rank over the 32
combinaisons of cell line and ligands.

s = HPNScoringNetwork(filename="file1zip")
s.compute_all_aucs()

3.4. References 43

http://docs.python.org/library/functions.html#int

DREAMTools, Release 1.3.0

sall = HPNScoringNetwork_all()
s.aucs is a list where each element is a dictionary of
sall.add_auc(s1.auc, "team1")

let us build
aucs2 = copy.deepcopy(s.auc)
for c in s.valid_cellLines:

for l in s.valid_ligands:
auc2[c][l] = numpy.random.uniform(0.5,0.7)

sall.add_auc(s2.auc, "team2")
sall.get_ranking()
{'team1': 1.96875, 'team2': 1.03125}

This class is independent of HPNSCoringNetwork. However, it takes as input the returned values of HPN-
ScoringNetwork.compute_all_auc()

add_auc(auc, participant_id)

get_empty_auc()

get_integer_ranks()

get_mean_ranks()

get_mean_zscores()

get_rank_participant(participant)

get_ranking()

class HPNScoringPrediction(filename=None, version=2, verbose=False)

compute_all_rmse()
Some species were removed on purpose during the analysis

Those are hardcoded. To compute null distribution, we can keep all the species, in which case, _version
parameter must be 0 must be set to False.

create_random_data()
Here, we don’t want the true prediction that contains only what is requested (AZD8055) but the orignal
training data with 2 or 3 inhibitors such as GSK and PD17 so that we can shuffle them.

We want to select for a given cell line and phosphos a data set to fill at a given time. The datum is
selected accross the 8 stimuli, inhibitors +DMSO, and time points.

TAZ and FOX were asked to be excluded so this cause some trouble now but some user preidction
still include them. Should add a if statement to ignore them. Does not matter to compute the null
distribution

get_mean_rmse()

get_null(N=100, tag=’sc2a’)

s = HPNScoringPrediction()
nulls = s.get_null(1000)
the nulls contains the 4 cell lines
let us save the first one
for name in ['UACC812', 'BT549', 'MCF7', 'BT20']:

data = [x[name] for x in nulls]
fh = open('%s.json' % name, 'w')
import json
json.dump(data, fh)
fh.close()

44 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

get_rmse(cellLine, phospho)

Warning: x in converted into a log2 scale

get_training_data()

get_true_prediction()
Reads true predcition from the 4 CSV files that contain the true prediction

data is stored as follows in the tru_prediction attribute:

get_user_prediction()
should be MIDAS files as in https://www.synapse.org/#!Synapse:syn1973835

test_synapse_id = ‘syn2000886’

true_synapse_id = ‘syn2009136’

class HPNScoringPrediction_ranking
This class is used to compute the ranks of the different participants based on an average rank over the 4 cell
lines times phosphos

s = HPNScoringPrediction(filename="file1zip")
s.compute_all_rmes()

r = HPNScoringPrediction_ranking()
s.aucs is a list where each element is a dictionary of
r.add_rme(s1.rmse, "team1")

rmse1 = r.get_randomised_rmse(r.rmse[0], sigma=1)
rmse2 = r.get_randomised_rmse(r.rmse[0], sigma=2)
rmse3 = r.get_randomised_rmse(r.rmse[0], sigma=3)

r.add_rmse(rmse1, "team2")
r.add_rmse(rmse2, "team3")
r.add_rmse(rmse3, "team4")

sall.add_rmse(s2.rmse, "team2")
sall.get_ranking()
{'team1': 1.96875, 'team2': 1.03125}

This class is independent of HPNSCoringPrediction. However, it takes as input the returned values of
HPNScoringPrediction.compute_all_rmse()

add_rmse(data, participant_id)

get_integer_ranks()

get_mean_ranks()

get_mean_zscores()

get_randomised_rmse(rmse, sigma=1)
THis is useful for testing. See class documentaton

get_rank_participant(participant)

get_ranking()

species

valid_phosphos

3.4. References 45

https://www.synapse.org/#!Synapse:syn1973835

DREAMTools, Release 1.3.0

exception ScoringError(value)
An exception class for scoring classes

class HPNScoringPredictionInsilico_ranking
This class is used to compute the ranks of the different participants based on an average rank over the 4 cell
lines times phosphos

s = HPNScoringPredictionInsilico(filename="file1zip")
s.compute_all_rmes()

r = HPNScoringPrediction_ranking()
s.aucs is a list where each element is a dictionary of
r.add_rme(s1.rmse, "team1")

rmse1 = r.get_randomised_rmse(r.rmse[0], sigma=1)
rmse2 = r.get_randomised_rmse(r.rmse[0], sigma=2)
rmse3 = r.get_randomised_rmse(r.rmse[0], sigma=3)

r.add_rmse(rmse1, "team2")
r.add_rmse(rmse2, "team3")
r.add_rmse(rmse3, "team4")

sall.add_rmse(s2.rmse, "team2")
sall.get_ranking()
{'team1': 1.96875, 'team2': 1.03125}

This class is independent of HPNSCoringPrediction. However, it takes as input the returned values of
HPNScoringPrediction.compute_all_rmse()

add_rmse(data, participant_id)

get_integer_ranks()

get_mean_ranks()

get_mean_zscores()

get_randomised_rmse(rmse, sigma=1)
THis is useful for testing. See class documentaton

get_rank_participant(participant)

get_ranking()

class HPNScoringPredictionInsilico(filename=None, verbose=False, version=2)
dimension1 :inhibitor dimenssion2: phosp dimensson3 stimulus dimnesion4 : time

SC2B sub challenge (prediction in silico)

Parameters

• filename – file to score

• version (str) – default to ‘official’ (see note below). Set to anything else to use
correct network

Note: This code use the official gold standard used in https://www.synapse.org/#!Synapse:syn1720047/wiki/60532
. Note, however, that a new corrected version is now provided and may be used. Differences with the
official version should be small and have no effect on the ranking shown in the synapse page.

compute_all_rmse(null=False)

create_random_data()
Here, we don’t want the true prediction that contains only what is requested (AZD8055) but the orignal
training data with 2 or 3 inhibitors such as GSK and PD17 so that we can shuffle them.

46 Chapter 3. Full documentation

http://docs.python.org/library/functions.html#str
https://www.synapse.org/#!Synapse:syn1720047/wiki/60532

DREAMTools, Release 1.3.0

We want to select for a given cell line and phosphos a data set to fill at a given time. The datum is
slected accross the 8 stimuli, inhibitors +DMSO, and time points.

get_mean_rmse()

get_mean_zscores()

get_null(N=100, tag=’sc2b’)

get_rmse(inhibitor, phospho)

Warning: x in converted into a log2 scale

get_training_data()

get_true_prediction()

get_user_prediction()

get_zscores(rmses=None)

read_prediction_insilico(filename)
Reads true predcition from the 20 CSV files

read_true_prediction_michael(filename)

test_synapse_id = ‘syn2009175’

true_synapse_id = ‘syn2143242’

class D8C1(version=2, verbose=True, download=True, **kargs)
Factory for the D8C1 (HPN-Breast challenge)

download_goldstandard(subname)

download_template(subname)

score(filename, subname=None)

D8C2

class D8C2(verbose=True, download=True, **kargs)
A class dedicated to D8C2 challenge

from dreamtools import D8C2
s = D8C2()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

constructor

download_goldstandard(subname)

download_template(sub_challenge)
Download template

Parameters sub_challenge – sc1 or sc2 string

score(filename, subname)
Scoring functions for the 2 sub challenges

score_sc1(filename)
See D8C2_sc1 class for details

3.4. References 47

DREAMTools, Release 1.3.0

score_sc2(filename)
See D8C2_sc2 class for details

class D8C2_sc1(filename, verboseR=True)
Scoring class for D8C2 sub challenge 1

from dreamtools impoty D8C2
s = D8C2_sc1(filename)
s.run()
s.df

see github README for details

run()
Compute the score and populates df attribute with results

class D8C2_sc2(filename, verboseR=True)
D8C2 Tox challenge scoring (sub challenge 2)

from dreamtools import D8C2_s2
s = D8C2_sc2(filename)
s.run()
s.df

see github README for details

run()
Compute the score and populates df attribute with results

DREAM9

D9C1

Based on https://github.com/Sage-Bionetworks/DREAM9_Broad_Challenge_Scoring/ and instructions and com-
munications from Mehmet Gonen.

Original code in R. Translated to Python by Thomas Cokelaer

class D9C1(verbose=True, download=True, **kargs)
A class dedicated to D9C1 challenge

from dreamtools import D9C1
s = D9C1()
filename = s.download_template()
s.score(filename)

For consistency, all gene essentiality and genomic data files will be given in the same gct file format.

Briefly, this means:

The first and second lines contains the version string and numbers indicating the size of the data table that
is contained in the remainder of the file:

#1.2
(# of data rows) (tab) (# of data columns)

The third line contains a list of identifiers for the samples associated with each of the columns in the re-
mainder of the file:

48 Chapter 3. Full documentation

https://github.com/dreamtools/dreamtools/tree/master/dreamtools/dream8/D8C2
https://github.com/dreamtools/dreamtools/tree/master/dreamtools/dream8/D8C2
https://github.com/Sage-Bionetworks/DREAM9_Broad_Challenge_Scoring/

DREAMTools, Release 1.3.0

Name (tab) Description (tab) (sample 1 name) (tab) (sample 2 name) (tab) ... (sample N name)

And the remainder of the data file contains data for each of the genes.
There is one line for each gene and one column for each of the samples.
The first two fields in the line contain name and descriptions for the
genes (names and descriptions can contain spaces since fields are
separated by tabs). The number of lines should agree with the number of
data rows specified on line 2.:

(gene name) (tab) (gene description) (tab) (col 1 data) (tab) (col 2 data) (tab) ... (col N data)

constructor

download_goldstandard(subname=None)

download_template(subname=None)

score(filename, subname=None)

D9C2

D9C3 scoring function

Based on original source code from Mette Peters found at https://www.synapse.org/#!Synapse:syn4308980

class D9C3(verbose=True, download=True, **kargs)
A class dedicated to D9C3 challenge

from dreamtools import D9C3
s = D9C3()
filename = s.download_template()
s.score(filename)

Data and templates are downloaded from Synapse. You must have a login.

constructor

download_goldstandard(subname=None)

download_template(subname=None)

score(filename, subname=None)

DREAM9.5

D9dot5C1

D9dot5C1 challenge scoring functions

class D9dot5C1(verbose=True, download=True, **kargs)
A class dedicated to D9dot5C1 challenge

from dreamtools import D9dot5C1
s = D9dot5C1()

s.download_templates()
s.score('templates.txt.gz') # takes about 5 minutes

3.4. References 49

https://www.synapse.org/#!Synapse:syn4308980

DREAMTools, Release 1.3.0

constructor

download_goldstandard(subname)

download_gs()

download_template(name)

download_templates()
Download a template from synapse into ~/config/dreamtools/dream5/D5C2

Returns filename and its full path

score(filename, sub_challenge_name)

score_sc1(prediction_file)
Compute all results and compare user prediction with all official participants

This scoring function can take a long time (about 5-10 minutes).

score_sc2(prediction_file)

DREAM10

3.5 Credits

Contributions to DREAMTools are direct (e.g. by contributing to the code in the github repository
http://github.com/dreamtools/dreamtools) or indirectly (e.g., by developing an original scoring functions in
DREAM challenges). Since DREAMTools framework is dynamic by nature, we won’t keep a list of contrib-
utors, which would be outdated quickly. Instead, we recommend to check the scoring module themselves (e.g.,
dreamtools/dream5/D5C2/scoring.py) or the github log, the DREAM website (http://dreamchallenges.org), or the
Synapse web of the challenge itself.

3.6 ChangeLog

3.6.1 1.3.0 16/03/2016

• stable version synchronised with F1000 v2 paper.

• add a new notebook example (D9C1)

• all Challenge constructor have now the following parameters: verbose, download and **kargs so that if
another parameter is added, no code will need to be changed.

• documentation added for D7C4 to install Perl dependencies

3.6.2 1.2.6 02/03/2016

• CHANGES:

– since dreamtools is now in bioconda, we removed the installation scripts conda_install.bat and
conda_install.sh.

– Doc updates.

– conda recipes in ./conda removed (now in bioconda-recipes project)

50 Chapter 3. Full documentation

http://github.com/dreamtools/dreamtools
http://dreamchallenges.org

DREAMTools, Release 1.3.0

3.6.3 1.2.5

• More cleanup for conda (removing tests from the distribution)

3.6.4 1.2.4

• cleanup for bioconda

3.6.5 1.2.3

• CHANGES: improved documentation

• NEWS: 2 installer for linux/mac and for windows

3.6.6 1.2.2

• NEWS: add –version in dreamtools standalone

• NEWS: add install.sh

3.6.7 1.2.1

• Some synapse data requires the synapse’s user to accept the conditions of use on the synapse web page
(by clicking on some widgets. In dreamtools, if the terms have not been accepted, there was just an error
message from synapse. We now catch the error, print a more friendly message and open the synapse project
so that the user can browse through the project directly to accept the conditions.

3.6.8 1.2.0

• Better handling of errors and more friendly messages in the dreamtools standalone app.

3.6.9 1.1.1

• Fixes a couple of Python3 issues

• Finalise travis integration. Coverage and testing simplified but allows Travis to finish on time. May add
back tests little by little in the future.

• Update README and doc.

3.6.10 1.1.0

• Portage to Python3

• Add missing data files in D7C1

• Discard tests related to D9C3, which is not yet included.

3.6.11 1.0.0

first official release synchronized with submission to F1000 F1000 link

3.6. ChangeLog 51

http://f1000research.com/articles/4-1030/v1

DREAMTools, Release 1.3.0

3.6.12 0.11

• adding license

• adding onweb option in the executable.

• settings now uses CustomConfig class from easydev rather than a local implementation.

• fixing the distribution (MANIFEST)

• adding a docker example

• fixing Login to be interactive not jsut an error

• Fix MANIFEST to add missing cython file and README.rst

• All challenges from DREAM2 to DREAM8 are included except for D6C2, D7C2 and

D8C3. D6C2 and D7C2 may be included soon and D8C3 is available on an external site. D8.5 and D9.5 and
D9C1 also available.

3.6.13 0.9.2

• CHANGES: some changes in dream2/dream3 to finalise all those challenges.

3.6.14 0.9.1

• NEWS: add dreamtools.dream9.scoring.D9C1 challenge

• NEWS: add dreamtools.dream6.scoring.D6C3 challenge

3.6.15 0.9.0

• Upgrade version to higher number to reflect the fact that the package is now more robust

3.6.16 0.1.6

• Add a bunch of other challenges mostly D2/D3/D4/D5 and fixes + tests

3.6.17 0.1.5

• NEWS: some new classes dreamtools.dream2 related to DREAM2

• NEWS: add dreamtools.dream5.scoring.D5C1 challenge in Dreamtools

• NEWS: add dreamtools.dream3.scoring.D3C2 challenge in Dreamtools

• NEWS: add dreamtools.dream3.scoring.D3C3 challenge in Dreamtools

• NEWS: add dreamtools.dream3.scoring.D3C4 challenge in Dreamtools

• Changes: fix dreamtools.dream4.scoring.D4C2 challenge in Dreamtools

3.6.18 0.1.4

• NEWS: add dreamtools.dream4.scoring.D4C2 challenge in Dreamtools

• NEWS: add dreamtools.dream4.scoring.D4C1 challenge in Dreamtools

• CHANGES: move a download_data method from D5C2 into the Challenge main class to factorise some
code.

52 Chapter 3. Full documentation

DREAMTools, Release 1.3.0

3.6.19 0.1.3

• NEWS: add D4C3 challenge in Dreamtools

3.6.20 0.1.2

• NEWS: added dreamtools-layout for the developer to automatically create a challenge layout

• CHANGES: dreamtools-scoring now handles automatically new challenges providing the Challenge class
has the mehod score() and download_template() available.

3.6.21 0.1.1

• NEWS: add D9dot5C1 challenge

3.6.22 0.1.0

• NEWS: Challenge D8C1, D8C2, D5C2, D7C1 (D6C1) available

• NEWS: dreamtools-scoring standalone provided

3.7 FAQS

3.7.1 Installation:: compilation issues

DREAMTools depends on packages (e.g., numpy, cython) that requires a C compilator. When using the pip
commands dependencies will be compiled. This takes time but more importantly may fail (e.g., missing library).
In this situation, we would recommend you to use Anaconda solution. This will also speed up the installation.
Visit Anaconda.org and install the software. Once done, open a terminal and type:

pip install cython
pip install dreamtools

3.7.2 What are the challenges available in DREAMTools ?

You can either check this reference http://f1000research.com/articles/4-1030/v1 (Table1), or type:

dreamtools --help

3.7.3 I cannot find the gold standard or template in the source code, why ?

To keep DREAMTools package light-weight, we have moved some of the data files on Synapse website. However,
data (templates and gold standard) are downloaded on request and stored locally in a common directory. For
instance under Linux, the files are stored in /home/user/.config/dreamtools/. On Windows’s platforms, the location
looks like but may depend on the system: C:UsersuserAppDataLocaldreamtoolsdreamtools.

Once the DREAMTools package is installed, you can retrieve the location of a template of gold standard using the
following methods (e.g., for D5C1 challenge):

3.7. FAQS 53

http://f1000research.com/articles/4-1030/v1

DREAMTools, Release 1.3.0

from dreamtools import D5C1
s = D5C1()
s.download_template()
s.download_goldstandard()

3.7.4 Is DREAMTools available for Python 3 ?

Yes, it is Python3 compatible. Note, however, that some dependencies (e.g., gevent, synapseclient) were not
Python3 compatible when we started the DREAMTools project. The gevent version available on the Python
repository (pip command) should now be compatible. The synapseclient will be soon. Meanwhile, you should
install this version:

pip install git+https://git@github.com/cokelaer/synapsePythonClient.git@v1.4.0_py3_dreamtools#egg=synapsePythonClient

3.7.5 Do I need a Synapse account ?

It depends on the challenge you are interested in. In general, files will be downloaded from synapse so you may
need to have an account. Besides, you may be requested to accept conditions of use of some data sets.

54 Chapter 3. Full documentation

Python Module Index

c
dreamtools.core.challenge, 14
dreamtools.core.cindex, 19
dreamtools.core.downloader, 18
dreamtools.core.layout, 19
dreamtools.core.rocs, 15
dreamtools.core.sageutils, 17
dreamtools.core.settings, 16
dreamtools.core.ziptools, 18

d
dreamtools.dream2.D2C1.scoring, 21
dreamtools.dream2.D2C2.scoring, 21
dreamtools.dream2.D2C3.scoring, 21
dreamtools.dream2.D2C4.scoring, 22
dreamtools.dream2.D2C5.scoring, 23
dreamtools.dream3.D3C1.scoring, 23
dreamtools.dream3.D3C2.scoring, 23
dreamtools.dream3.D3C3.scoring, 24
dreamtools.dream3.D3C4.scoring, 24
dreamtools.dream4.D4C1.scoring, 25
dreamtools.dream4.D4C2.scoring, 26
dreamtools.dream4.D4C3.scoring, 26
dreamtools.dream5.D5C1.scoring, 27
dreamtools.dream5.D5C2.scoring, 28
dreamtools.dream5.D5C3.scoring, 29
dreamtools.dream5.D5C4.scoring, 30
dreamtools.dream6.D6C1.scoring, 30
dreamtools.dream6.D6C2.scoring, 31
dreamtools.dream6.D6C3.scoring, 31
dreamtools.dream6.D6C4.scoring, 32
dreamtools.dream7.D7C1.scoring, 32
dreamtools.dream7.D7C2.scoring, 36
dreamtools.dream7.D7C3.scoring, 36
dreamtools.dream7.D7C4.scoring, 36
dreamtools.dream8.D8C1.scoring, 38
dreamtools.dream8.D8C2.sc1, 48
dreamtools.dream8.D8C2.sc2, 48
dreamtools.dream8.D8C2.scoring, 47
dreamtools.dream9.D9C1.scoring, 48
dreamtools.dream9.D9C3.scoring, 49
dreamtools.dream9dot5.D9dot5C1.scoring,

49

55

DREAMTools, Release 1.3.0

56 Python Module Index

Index

A
add_auc() (HPNScoringNetwork_ranking method), 44
add_rmse() (HPNScoringPrediction_ranking method),

45
add_rmse() (HPNScoringPredictionInsilico_ranking

method), 46
auc (HPNScoringNetworkInsilico attribute), 43

C
Challenge (class in dreamtools.core.challenge), 14
cindex() (ConcordanceIndex method), 19
cindex() (in module dreamtools.core.cindex), 19
classes (ROC attribute), 16
cleanup() (D5C2 method), 28
compute_all_aucs() (HPNScoringNetwork method), 38
compute_all_auprs() (HPNScoringNetwork method),

39
compute_all_descendant_matrices() (HPNScoringNet-

work method), 39
compute_all_metrics() (HPNScoringNetwork method),

39
compute_all_rmse() (HPNScoringPrediction method),

44
compute_all_rmse() (HPNScoringPredictionInsilico

method), 46
compute_all_rocs() (HPNScoringNetwork method), 39
compute_auc() (HPNScoringNetwork method), 39
compute_aupr() (HPNScoringNetwork method), 39
compute_aupr() (ROCDiscovery method), 16
compute_descendant_matrix() (HPNScoringNetwork

method), 39
compute_metrics() (HPNScoringNetwork method), 39
compute_other_metrics() (HPNScoringNetwork

method), 39
compute_roc() (HPNScoringNetwork method), 39
compute_score() (HPNScoringNetwork method), 40
compute_score() (HPNScoringNetworkInsilico

method), 43
compute_statistics() (D5C2 method), 28
ConcordanceIndex (class in dreamtools.core.cindex),

19
concordanceIndex() (in module dream-

tools.core.cindex), 20
create_layout() (Layout method), 19

create_random_data() (HPNScoringPrediction
method), 44

create_random_data() (HPNScoringPredictionInsilico
method), 46

D
D2C1 (class in dreamtools.dream2.D2C1.scoring), 21
D2C2 (class in dreamtools.dream2.D2C2.scoring), 21
D2C3 (class in dreamtools.dream2.D2C3.scoring), 21
D2C4 (class in dreamtools.dream2.D2C4.scoring), 22
D2C5 (class in dreamtools.dream2.D2C5.scoring), 23
D3C1 (class in dreamtools.dream3.D3C1.scoring), 23
D3C2 (class in dreamtools.dream3.D3C2.scoring), 23
D3C3 (class in dreamtools.dream3.D3C3.scoring), 24
D3C4 (class in dreamtools.dream3.D3C4.scoring), 24
D3D4ROC (class in dreamtools.core.rocs), 16
D4C1 (class in dreamtools.dream4.D4C1.scoring), 25
D4C2 (class in dreamtools.dream4.D4C2.scoring), 26
D4C3 (class in dreamtools.dream4.D4C3.scoring), 26
D5C1 (class in dreamtools.dream5.D5C1.scoring), 27
D5C2 (class in dreamtools.dream5.D5C2.scoring), 28
D5C3 (class in dreamtools.dream5.D5C3.scoring), 29
D5C4 (class in dreamtools.dream5.D5C4.scoring), 30
D6C1 (class in dreamtools.dream6.D6C1.scoring), 30
D6C2 (class in dreamtools.dream6.D6C2.scoring), 31
D6C3 (class in dreamtools.dream6.D6C3.scoring), 31
D6C4 (class in dreamtools.dream6.D6C4.scoring), 32
D7C1 (class in dreamtools.dream7.D7C1.scoring), 32
D7C2 (class in dreamtools.dream7.D7C2.scoring), 36
D7C3 (class in dreamtools.dream7.D7C3.scoring), 36
D7C4 (class in dreamtools.dream7.D7C4.scoring), 36
D8C1 (class in dreamtools.dream8.D8C1.scoring), 47
D8C2 (class in dreamtools.dream8.D8C2.scoring), 47
D8C2_sc1 (class in dreamtools.dream8.D8C2.sc1), 48
D8C2_sc2 (class in dreamtools.dream8.D8C2.sc2), 48
D9C1 (class in dreamtools.dream9.D9C1.scoring), 48
D9C3 (class in dreamtools.dream9.D9C3.scoring), 49
D9dot5C1 (class in dream-

tools.dream9dot5.D9dot5C1.scoring),
49

debug (Challenge attribute), 15
directed_to_undirected() (D4C2 method), 26
directory (Challenge attribute), 15
download() (Downloader method), 19
download_all_data() (D5C2 method), 28

57

DREAMTools, Release 1.3.0

download_goldstandard() (D2C1 method), 21
download_goldstandard() (D2C2 method), 21
download_goldstandard() (D2C3 method), 22
download_goldstandard() (D2C4 method), 22
download_goldstandard() (D2C5 method), 23
download_goldstandard() (D3C1 method), 23
download_goldstandard() (D3C2 method), 24
download_goldstandard() (D3C3 method), 24
download_goldstandard() (D3C4 method), 25
download_goldstandard() (D4C1 method), 25
download_goldstandard() (D4C2 method), 26
download_goldstandard() (D4C3 method), 27
download_goldstandard() (D5C1 method), 28
download_goldstandard() (D5C2 method), 28
download_goldstandard() (D5C3 method), 29
download_goldstandard() (D5C4 method), 30
download_goldstandard() (D6C1 method), 30
download_goldstandard() (D6C2 method), 31
download_goldstandard() (D6C3 method), 31
download_goldstandard() (D6C4 method), 32
download_goldstandard() (D7C1 method), 33
download_goldstandard() (D7C2 method), 36
download_goldstandard() (D7C3 method), 36
download_goldstandard() (D7C4 method), 37
download_goldstandard() (D8C1 method), 47
download_goldstandard() (D8C2 method), 47
download_goldstandard() (D9C1 method), 49
download_goldstandard() (D9C3 method), 49
download_goldstandard() (D9dot5C1 method), 50
download_gs() (D9dot5C1 method), 50
download_template() (Challenge method), 15
download_template() (D2C1 method), 21
download_template() (D2C2 method), 21
download_template() (D2C3 method), 22
download_template() (D2C4 method), 22
download_template() (D2C5 method), 23
download_template() (D3C1 method), 23
download_template() (D3C2 method), 24
download_template() (D3C3 method), 24
download_template() (D3C4 method), 25
download_template() (D4C1 method), 25
download_template() (D4C2 method), 26
download_template() (D4C3 method), 27
download_template() (D5C1 method), 28
download_template() (D5C2 method), 28
download_template() (D5C3 method), 29
download_template() (D5C4 method), 30
download_template() (D6C1 method), 30
download_template() (D6C2 method), 31
download_template() (D6C3 method), 31
download_template() (D6C4 method), 32
download_template() (D7C1 method), 33
download_template() (D7C2 method), 36
download_template() (D7C3 method), 36
download_template() (D7C4 method), 37
download_template() (D8C1 method), 47
download_template() (D8C2 method), 47
download_template() (D9C1 method), 49

download_template() (D9C3 method), 49
download_template() (D9dot5C1 method), 50
download_templates() (D9dot5C1 method), 50
Downloader (class in dreamtools.core.downloader), 18
downloadSubmissionAndFilename() (SynapseClient

method), 17
dreamtools.core.challenge (module), 14
dreamtools.core.cindex (module), 19
dreamtools.core.downloader (module), 18
dreamtools.core.layout (module), 19
dreamtools.core.rocs (module), 15
dreamtools.core.sageutils (module), 17
dreamtools.core.settings (module), 16
dreamtools.core.ziptools (module), 18
dreamtools.dream2.D2C1.scoring (module), 21
dreamtools.dream2.D2C2.scoring (module), 21
dreamtools.dream2.D2C3.scoring (module), 21
dreamtools.dream2.D2C4.scoring (module), 22
dreamtools.dream2.D2C5.scoring (module), 23
dreamtools.dream3.D3C1.scoring (module), 23
dreamtools.dream3.D3C2.scoring (module), 23
dreamtools.dream3.D3C3.scoring (module), 24
dreamtools.dream3.D3C4.scoring (module), 24
dreamtools.dream4.D4C1.scoring (module), 25
dreamtools.dream4.D4C2.scoring (module), 26
dreamtools.dream4.D4C3.scoring (module), 26
dreamtools.dream5.D5C1.scoring (module), 27
dreamtools.dream5.D5C2.scoring (module), 28
dreamtools.dream5.D5C3.scoring (module), 29
dreamtools.dream5.D5C4.scoring (module), 30
dreamtools.dream6.D6C1.scoring (module), 30
dreamtools.dream6.D6C2.scoring (module), 31
dreamtools.dream6.D6C3.scoring (module), 31
dreamtools.dream6.D6C4.scoring (module), 32
dreamtools.dream7.D7C1.scoring (module), 32
dreamtools.dream7.D7C2.scoring (module), 36
dreamtools.dream7.D7C3.scoring (module), 36
dreamtools.dream7.D7C4.scoring (module), 36
dreamtools.dream8.D8C1.scoring (module), 38
dreamtools.dream8.D8C2.sc1 (module), 48
dreamtools.dream8.D8C2.sc2 (module), 48
dreamtools.dream8.D8C2.scoring (module), 47
dreamtools.dream9.D9C1.scoring (module), 48
dreamtools.dream9.D9C3.scoring (module), 49
dreamtools.dream9dot5.D9dot5C1.scoring (module),

49
DREAMToolsConfig (class in dream-

tools.core.settings), 16

E
edge_score_to_eda_files() (HPNScoringNetwork

method), 40
error() (HPNScoring method), 42
extractall() (ZIP method), 18

G
get_auc() (HPNScoringNetworkInsilico method), 43

58 Index

DREAMTools, Release 1.3.0

get_auc_final_scoring() (HPNScoringNetwork
method), 40

get_aucs() (HPNScoringNetwork method), 40
get_average_auc() (HPNScoringNetwork method), 40
get_empty_auc() (HPNScoringNetwork_ranking

method), 44
get_integer_ranks() (HPNScoringNetwork_ranking

method), 44
get_integer_ranks() (HPNScoringPrediction_ranking

method), 45
get_integer_ranks() (HPNScoringPredictionInsil-

ico_ranking method), 46
get_mean_and_sigma_null_parameters() (HPNScor-

ingNetwork method), 40
get_mean_ranks() (HPNScoringNetwork_ranking

method), 44
get_mean_ranks() (HPNScoringPrediction_ranking

method), 45
get_mean_ranks() (HPNScoringPredictionInsil-

ico_ranking method), 46
get_mean_rmse() (HPNScoringPrediction method), 44
get_mean_rmse() (HPNScoringPredictionInsilico

method), 47
get_mean_zscores() (HPNScoringNetwork method), 40
get_mean_zscores() (HPNScoringNetwork_ranking

method), 44
get_mean_zscores() (HPNScoringPrediction_ranking

method), 45
get_mean_zscores() (HPNScoringPredictionInsilico

method), 47
get_mean_zscores() (HPNScoringPredictionInsil-

ico_ranking method), 46
get_null() (HPNScoringPrediction method), 44
get_null() (HPNScoringPredictionInsilico method), 47
get_null_auc_aupr() (HPNScoringNetworkInsilico

method), 43
get_null_distribution() (HPNScoringNetwork method),

40
get_null_parameters_model1() (D7C1 method), 33
get_null_timecourse_model1() (D7C1 method), 33
get_null_topology() (D7C1 method), 33
get_pathname() (Challenge method), 15
get_pvalues_parameter() (D7C1 method), 33
get_pvalues_timecourse() (D7C1 method), 33
get_pvalues_topology() (D7C1 method), 33
get_random_topology() (D7C1 method), 33
get_randomised_rmse() (HPNScoringPredic-

tion_ranking method), 45
get_randomised_rmse() (HPNScoringPredictionInsil-

ico_ranking method), 46
get_rank_participant() (HPNScoringNetwork_ranking

method), 44
get_rank_participant() (HPNScoringPredic-

tion_ranking method), 45
get_rank_participant() (HPNScoringPredictionInsil-

ico_ranking method), 46
get_ranking() (HPNScoringNetwork_ranking method),

44

get_ranking() (HPNScoringPrediction_ranking
method), 45

get_ranking() (HPNScoringPredictionInsilico_ranking
method), 46

get_rmse() (HPNScoringPrediction method), 45
get_rmse() (HPNScoringPredictionInsilico method), 47
get_roc() (HPNScoringNetworkInsilico method), 43
get_roc() (ROC method), 16
get_statistics() (D3D4ROC method), 16
get_statistics() (ROC method), 16
get_statistics() (ROCDiscovery method), 16
get_table() (D5C2 method), 28
get_training_data() (HPNScoringPrediction method),

45
get_training_data() (HPNScoringPredictionInsilico

method), 47
get_true_prediction() (HPNScoringPrediction method),

45
get_true_prediction() (HPNScoringPredictionInsilico

method), 47
get_user_prediction() (HPNScoringPrediction method),

45
get_user_prediction() (HPNScoringPredictionInsilico

method), 47
get_zscore() (HPNScoringNetworkInsilico method), 43
get_zscores() (HPNScoringNetwork method), 41
get_zscores() (HPNScoringPredictionInsilico method),

47
getMyProfile() (SynapseClient method), 17
getpath_data() (LocalData method), 14
getpath_gs() (LocalData method), 14
getpath_lb() (LocalData method), 14
getpath_template() (LocalData method), 14

H
HPNScoring (class in dream-

tools.dream8.D8C1.scoring), 42
HPNScoringNetwork (class in dream-

tools.dream8.D8C1.scoring), 38
HPNScoringNetwork_ranking (class in dream-

tools.dream8.D8C1.scoring), 43
HPNScoringNetworkInsilico (class in dream-

tools.dream8.D8C1.scoring), 42
HPNScoringPrediction (class in dream-

tools.dream8.D8C1.scoring), 44
HPNScoringPrediction_ranking (class in dream-

tools.dream8.D8C1.scoring), 45
HPNScoringPredictionInsilico (class in dream-

tools.dream8.D8C1.scoring), 46
HPNScoringPredictionInsilico_ranking (class in

dreamtools.dream8.D8C1.scoring), 46

I
import_scoring_class() (Challenge method), 15
init() (D5C2 method), 29

J
json() (SynapseClient method), 18

Index 59

DREAMTools, Release 1.3.0

L
Layout (class in dreamtools.core.layout), 19
layout() (in module dreamtools.core.layout), 19
leaderboard() (D7C1 method), 33
leaderboard_compute_score_parameters_model1()

(D7C1 method), 33
leaderboard_compute_score_timecourse_model1()

(D7C1 method), 33
leaderboard_compute_score_topology() (D7C1

method), 34
load_all_eda_files_from_zip() (HPNScoringNetwork

method), 41
load_eda_file() (HPNScoringNetwork method), 41
load_leaderboard() (D2C1 method), 21
load_prob() (D4C2 method), 26
load_species() (HPNScoring method), 42
load_submission() (HPNScoringNetwork method), 41
load_submissions() (D7C1 method), 34
loadmat() (Challenge method), 15
loadZIPFile() (ZIP method), 18
LocalData (class in dreamtools.core.challenge), 14
Login (class in dreamtools.core.sageutils), 18

M
mainpath (Challenge attribute), 15
MCC() (in module dreamtools.core.rocs), 16
mkdir() (Challenge method), 15
mTor_index (HPNScoring attribute), 42

O
onweb() (Challenge method), 15

P
plot() (D3C4 method), 25
plot() (D3D4ROC method), 16
plot() (D4C2 method), 26
plot() (D4C3 method), 27
plot() (D5C2 method), 29
plot_all_rocs() (HPNScoringNetwork method), 41
plot_null_distribution() (HPNScoringNetworkInsilico

method), 43
plot_roc() (HPNScoringNetwork method), 41
plot_roc() (ROC method), 16
print_aucs() (HPNScoringNetwork method), 41
probability() (D3C1 method), 23

R
read() (ZIP method), 18
read_all_participants() (D6C3 method), 31
read_file() (HPNScoringNetworkInsilico method), 43
read_prediction_insilico() (HPNScoringPredictionIn-

silico method), 47
read_true_prediction_michael() (HPNScoringPredic-

tionInsilico method), 47
ROC (class in dreamtools.core.rocs), 15
ROCDiscovery (class in dreamtools.core.rocs), 16
run() (D8C2_sc1 method), 48

run() (D8C2_sc2 method), 48

S
score (HPNScoring attribute), 42
score() (Challenge method), 15
score() (D2C1 method), 21
score() (D2C2 method), 21
score() (D2C3 method), 22
score() (D2C4 method), 22
score() (D2C5 method), 23
score() (D3C1 method), 23
score() (D3C2 method), 24
score() (D3C3 method), 24
score() (D3C4 method), 25
score() (D4C1 method), 25
score() (D4C2 method), 26
score() (D4C3 method), 27
score() (D5C1 method), 28
score() (D5C2 method), 29
score() (D5C3 method), 29
score() (D5C4 method), 30
score() (D6C1 method), 31
score() (D6C2 method), 31
score() (D6C3 method), 32
score() (D6C4 method), 32
score() (D7C1 method), 34
score() (D7C2 method), 36
score() (D7C3 method), 36
score() (D7C4 method), 37
score() (D8C1 method), 47
score() (D8C2 method), 47
score() (D9C1 method), 49
score() (D9C3 method), 49
score() (D9dot5C1 method), 50
score_A() (D7C4 method), 37
score_and_compare_with_lb() (D2C1 method), 21
score_B() (D7C4 method), 37
score_challengeA() (D5C3 method), 29
score_challengeA() (D5C4 method), 30
score_challengeB() (D5C3 method), 29
score_kinases() (D4C1 method), 25
score_model1_parameters() (D7C1 method), 34
score_model1_timecourse() (D7C1 method), 34
score_pdz() (D4C1 method), 26
score_prediction() (D3C4 method), 25
score_prediction() (D4C2 method), 26
score_sc1() (D8C2 method), 47
score_sc1() (D9dot5C1 method), 50
score_sc2() (D8C2 method), 47
score_sc2() (D9dot5C1 method), 50
score_sh3() (D4C1 method), 26
score_topology() (D7C1 method), 35
scores (ROC attribute), 16
ScoringError, 45
species (HPNScoringPrediction_ranking attribute), 45
sub_challenges (D2C3 attribute), 22
sub_challenges (D2C4 attribute), 22
SynapseClient (class in dreamtools.core.sageutils), 17

60 Index

DREAMTools, Release 1.3.0

T
test() (Challenge method), 15
test_synapse_id (HPNScoringNetwork attribute), 41
test_synapse_id (HPNScoringNetworkInsilico at-

tribute), 43
test_synapse_id (HPNScoringPrediction attribute), 45
test_synapse_id (HPNScoringPredictionInsilico at-

tribute), 47
to_eda() (HPNScoringNetworkInsilico method), 43
true_synapse_id (HPNScoringNetwork attribute), 41
true_synapse_id (HPNScoringNetworkInsilico at-

tribute), 43
true_synapse_id (HPNScoringPrediction attribute), 45
true_synapse_id (HPNScoringPredictionInsilico

attribute), 47

U
unzip() (Challenge method), 15

V
valid_cellLines (HPNScoring attribute), 42
valid_length (HPNScoring attribute), 42
valid_ligands (HPNScoring attribute), 42
valid_phosphos (HPNScoringPrediction_ranking at-

tribute), 45
validation() (HPNScoringNetwork method), 41

Z
ZIP (class in dreamtools.core.ziptools), 18

Index 61

	Overview
	Available challenges, templates and gold standards
	Full documentation
	Python Module Index

